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Abstract —A stiffness method is used to study the dispersion characteristics of waves propagating
in laminated composite cvlinders. Each lamina of the cylinder can possess distinct anisotropic
propertics, mass density and thickness. The objective of the study is to analyze the effects of the
circumferential wave number. ply lay up configuration, number of layers, and the thickness-to-
radius ratio on the dispersion characteristics. A Rayleigh -Ritz type of approximation of the through-
thickness variation of the displacements which maintains the continuity ot displacements and
tractions at the interfaces between the layers has been used. The numerical results are compared
with those obtained from the method using gquadratic interpolation functions and also with the
analytical solutions to illustrate the accuracy and efficiency of the method. Frequency spectra for
four ply [ +30 ~30], and [+ 15/ = 15].. sixteen ply [+ 15/ 15|, and twelve ply [0,/ +45/—45/0,],
graphitesepoxy laminated compuosite cylinders are also presented. Numerical results show strong
influcnce of anisotropy on the guided waves.

INTRODUCTION

The role of laminated composite structures composed of fibre-reinforced members for space
cnvironments is widely recognized. Fibre-reinforced luminated composite tubes are cur-
rently being studied as candidate struts for trusses to be used in space structures. To improve
their utilization, their physical behaviour needs to be understood. Therefore, analysis of
wave propagation in laminated composite cylinders is becoming of interest among many
rescarchers. A comprehensive knowledge of wave scattering plays an important role in
identifying cracks in cylinders. One approach to solving the wave scattering problem is to
represent the scattered field by wave function expansion, as reported for plates by Abdul-
jubbar et al. (1983). In order to represent the scattered wave field by the wave function
expansion, displacement and stress eigenfunctions have to be accurately established.

The vibrations of an infinitely long, circular cylinder are governed by the dispersion
equation. This equation, which relates the frequency and the wavelength, requires the field
equations of linear elasticity to be satisfied throughout the cylinder and the lateral surfuces
of the cylinder to be free of traction. Wave propagation in homogencous isotropic cylinders
has been thoroughly studied analytically (Pochhammer, 1876 ; Onoc et al., 1962 ; Gazis,
1959 Armenakas et al., 1969). A considerable amount of information exists concerning
the vibration and wave propagation in isotropic composite circular cylinders. McNiven et
al. (1963) studied the propagation of axisymmeric longitudinal harmonic waves in a solid
rod encascd by an outer rod of finite thickness. Armenakas (1965, 1967, 1971) studicd the
propagation of torsional harmonic waves in composite rods and also derived the frequency
equation for the propagation of harmonic waves in a two-layered shell with arbitrary
circumferential modes, and presented the frequency spectrum of two-layered isotropic
shells. Jai-Lue Lai (1971) studicd the propagation of the harmonic waves in the elastic solid
rod with elastic rod casing and presented the model for soft core with stiff casing. Not many
analytical works for anisotropic cylinders have been reported. Axisymmetric waves in
homogeneous orthothopic cylinders were considered by Mirsky (1964) and McNiven and
Mengi (1971). while asymmetric problems were solved by Chou and Achenbach (1972) and
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Armenakas and Reitz (1973) ustng Frobenius series. To our knowledge. no exact solutions
for laminated anisotropic cvlinders are availuble.

Since the mathematical manipulation involved in deriving the frequency equations for
anisotropic cylinders is cumbersome and their solution intractable, many rescarchers have
studied the vibration in laminated orthotropic cylinders by approximate theories. The most
common ones are shell theories. A list of references on various approximate cyhindrical
shell theotics can be found in the recent papers by Khdeir er af. (1989) und Barbero and
Reddy (1990). However, shell theories are cumbersome to use and they do not provide
accurate eigenvalues required for wave scattering problems. Theories which vield accurate
cigenvalues and are computationally very convenient to use are theories derived through
the stiffness method of analysis. Nelson e ol (1971) and Huang and Dong (1984) presented
a stiffness method to study wave propagation in laminated anisotropic cylinders with an
arbitrary number of lamina. They discretized the cylinder tn the thickness direction into
mathematical sublavers and used interpolation functions that invelved only the dis-
placements at the interfaces between sublavers and at the middle of the sublavers as
the generalized coordinates, Although the technique generally yields good results for the
frequency spectrum, it does not directly lead to the evaluation of the tractions at the
interface boundarics. In order to use a hybrid model to study the scattering from cracks
and inhomogeneitics (Abduljabbar er af.. 1983 ; Koshiba ¢r af.. 1984}, it is necessary to gt
accurate results for both displacements and tractions. With this application in mind, we
present in this paper a stithness method which incorporates the displacements and tractions
at the interfaces between sublayers as generalized coordinates. A similar technique was used
by Datta ef «f. (1989} to study dispersion of waves in a lanunated plate.

In the stiffness method used in this study. the dynamic behaviour of @ compostte
cylinder iy approximated by dividing the evlinder into several sublayers and representing
the displacement distribution through the thickness of cach subluyer by polvnomial inter-
polation functions. These functions are chosen to satisfy the displacement and stress con-
tinuity at the interfaces between the adjoining sublayers. By applyving Hanulton's principle,
the dispersion equation is obtained as a standard algebraic eigenvalue problem. Eigenvadues
and cigenvectors ol this equation yicld the frequencies and the associated displacements
and tractions of propagating and evanescent modes.

The accuracy of the stiffness method is demonstrated by comparing the results with
the analytical solutions and the results obtained by the method employed by Huung and
Dong for homogeneous isotropic eylinders. Effects of circumferential wave number, ply Lay
up configuration, thickness-to-radius ratio and the number of fayers on the dispersion
characteristics in fibre-reinforced angle-ply eyhinders are investigated.

FORMULATION

Time harmonic elastic wave propagation in an infinite circular cylinder composed of
perfectly bonded lamina with possibly distinct mechanical propertics. as shown in Fig. 1,
is considered here. Two lateral surfaces of the cylinder, i.e. the inner and the outer surfaces,
are free of truction, The direction of wave propagation is .

Gorverning equations

In this method. each lamina is divided into several sublayers so that the total number
of sublayers through the thickness # is ¥. It is assumed that the Ath sublayer of thickness
h, with inner and outer radii r, and r,,; can possess distinct anisotropic moduli C,,
(p.g = 1.2,....6) and density p,. With reference to the cylindrical coordinates (r. 0, 2). the
stress strain relation in the Ath sublayer is given by :

fa} = [Clie). (h

where
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Fig. . Geometry of laminated cylinder.
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where ¢ denotes time, m the circumfierential wave number and i = \/— . The strain -
displacement relationship can then be written as:
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The factor ™ will be suppressed in the sequel.
Stiffness method

The displaccments at a point in the Ath sublayer approximated by interpolation
polynomials in the radial direction can be written as:
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L5 =M g + Vgl (4
where
0=t W),
Y S T T - < . - -
oy = G T T W .ty Gy iy T Weor Heoir

[Vi] and [.V.] are given in Appendix A. Prime in eqn (4) denotes differentiation with respect
to =. The generalized coordinates 6. . Ww.. &,. T, and ¥, are the values of 4. . W. d,,. T.,
and 7., respectively, at the A th interface. Subscript A + 1 denotes the same quantities at the
(k+ Dyth interface. These nodal values of the displacement and traction components are
functions of - and «.

The equations governing the nodal generalized coordinates a,. . wi. .. T and 7,
(k=1..... N+ 1) are obtained using Hamulton's principle. The Lagrangian. L, for the kth
sublaver is calculated as:

| e - .
L, = ’JJ {J (P CTI0 =8 T[C) e) )rdr} dzdr. {

In eqn (5). overbar and overdot denote complex conjugate and time differentiation respec-
tively. Using eqn (4) in strain -displacement relations (3), these in turn in (§), and summing
the contributions from all sublayers and upon sctting its first variation to zero leads to the
following equation (Datta ¢t al., 1989):

fA
—

KO HIKHQ™ + T HQ - [CHE ) +LENQ
S[CHGT )+ LENQ MG =00 @)

The generalized displucement traction vector {QF and the matrices [C], [CL)L [M]. [A]L

[A.] and [£,] through [£,] arc defined in Appendix AL Note that the matrices [C] and {K]

are real and symumetrie, [M], [£,] and [£4] are Hermitian, while [C,], [K;] and [£)] are
skew-Hermitian.

Algebraic eigenvalue problems
A solution for egn (6) can be assumed in the form:

:Q(:. l): - .:Q”} ¢ uv.(c w1 (7,

where fQ,) represents the nodal amplitude vector, @ the circular frequency and 3 the

taz iy

complex wave number. Substitution of eqn (7) into eqn (6) results in a set of lincar
homogencous cquations as:

(IR =3 (R 457 K] =K + K Qa) = 0. (8)
where
(K] = [E\]+ o’ [C].
(Ki] = [E:]1+*[C].
(K] = [Ed=wi[M]. 9)
For a non-trivial solution. the determinant of the coeflicient matrix must be zero which
results in the cigenvalue problem denoted as EVP-1. This cquation is the dispersion relation

to solve for the cigenvaluc 7 for given m. Alternatively, when 7 is specified. the generalized
cigenvalue problem denoted as EVP-I1 is obtained from eqn (8) as:
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[K1{00} = &[M,]{Q0} (10a)
where
K] = 7' K] =7 KD+ B - E ] +Ed).
M,] = [M]+7(Ci1-°(Cl. (10b)

The complex wave number, 7. is admissible only in the form of:

¥ =Yr—ivs (i
where

v = 0.

The propagation mode occurs when y, = 0. In contrast, if ¥, = 0 and 7, # 0 the mode is
evanescent or non-propagating. When 7, and 7, are both non-zero. edge vibration in which
motion is confined near the edge is possible. It can be seen from eqn (8) that if y is an
etgenvalue, then —7 is also an cigenvalue.

NUMERICAL RESULTS AND DISCUSSION

The method outlined above was implemented in a computer code to determine the
etgenvalues and eigenvectors of the EVP-1 and EVP-H (cqns (8) and (10)). For brevity,
frequency spectra for only propagating modes (EVP-1) are presented. The frequency
spectra in all examples are plotted for the normalized frequency € and the normalized wave
number &, In all examples considered below /1 and R are the total thickness and mean radius
of the cylinders, respectively. To demonstrate the accuracy, effectiveness and versatility of
the proposed method, numerical results for the following six examples are presented :

(1) Homogencous isotropic cylinder with the Poisson’s ratio, v, of 0.3, #/R = 1.5 and
circumferential wave numbers, m, of T and 3.

(2) A 4-ply [+30/ 30}, graphite/epoxy cylinder, H/R = 0.667 and circumferential wave
numbers, m, of | and 3.

(3) A 4-ply [+15/—15], graphite/epoxy cylinder, H#/R = 0.667 and circumferential wave
numbers, m, of 1 and 3.

(4) A 4-ply [+ 15/ —15], graphite/epoxy cylinder, H/R = 0.10, and a circumferential wave
number, mt, of 1 and 3.

(5) A 16-ply [+ 15/ —15], graphite/epoxy eylinder, H/R = 0.10 and a circumferential wave
number, m, of 1.

(6) A 12-ply [0,/ 445/ —45/0,], graphite/epoxy cylinder, H/R = 0.10 and a circumferential
wave-number, 1, of 1.

The finite element models consist of cight sublayers for the first four examples, 16
sublayers for the fifth example, and 12 sublayers for the last example. There are no
perceptible changes in the frequency spectra observed in every example by increasing the
number of sublayers. In all figures, the analytical solutions are represented by the circle,
the method used by Huang and Dong by the dotted line and the present method by the
solid line.

In the first example, the normalized frequency and the normalized wave number are
given by :

where
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and p is the shear modulus. Figures 2a and 2b show the frequency spectra for this example.
Comparing the results from the Huang and Dong method, the present method and the
analytical solution which contains the Bessel functions (Armenakas et al.. 1969). it can be
observed that the present method yields results that are in excellent agreement with the
analytical solution. For higher modes and. or larger wave numbers, the discrepancy between
the two approximate methods becomes noticeable. The circumferential wave number does
not affect the pattern of the discrepancy of the results.

For the rest of the examples. the elastic properties for each ply relative to their natural
elastic axes are (Huang and Dong, 1984):

E =139274x10°Nm~3, E;=15169x10°Nm °:
Gu=Grr =05861x10°Nm~2, vy =ve =02l

The normalized frequency and the normalized wave number are given by :

- _

where

[t can be scen from Figs Ja and 3b, for example 2, that the circumferential wave
number does not affect the pattern of the discrepancy between the two approximate
mecthods. However, the change in circumferential wave number from 1 to 3 is quite pro-
nounced in alteration of the dispersion characteristics. The rigid body motion does not
appear when the circumferential wave number is 3.

To illustrate the effect of ply lay up configuration, the frequency spectra for example
3 are shown in Figs 4a and 4b. The circumferential wave number shows a similar effect as
in the case of [+ 30/~ 30], ply lay up tube of example 2, Comparing Figs 3a and 3b with
Figs 4a and 4b for the same circumferential wave number, it can be obscrved that the
orientation of the fibres leads to the change in the dispersion characteristics. It can be seen
from Figs 3b and 4b that when m = 3, there are more backward waves; a phenomenon
associated with the region of the frequency spectrum having group and phase velocity of
opposite signs (Mecker and Meitzler, 1964), for [+ 30/ - 30], ply lay up.

The frequency spectra of the tubes with H/R = 0.10, corresponding to relatively thin
tubes, are presented in Figs 5-7 for examples 4-6, respectively. Figures 4 and 5 illustrate
the influence of the H/R ratio on the dispersion characteristics. When the circumferential
wave number is 1, the change in the H/R ratio does not significantly alter the frequency
spectra. All the effects, however, are localized in the region having both low wave numbers
and low frequencies. The influence of the H/R ratio becomes more pronounced for the
circumferential wave number of 3. It can be noticed from Figs 5a and 5b that, for relatively
thin tubes, the change in circumferential wave number from 1 to 3 does not lead to the
change of dispersion characteristics. Figures 5a and 6 show that the effect of layering (i.e.
the number of layers) is significant. Layering has a tendency to increase phase velocities.
Figure 7 shows the frequency spectra for example 6 which is a multi-angle symmetric lamina
used in the aerospace industry. It can be noticed. from Fig. 7, that the phase velocities
approach the constant phase velocity stage more slowly than in the cases of [+ 15/—15],
or [+ 30/ —30), ply lay up tubes.

From Figs 2-7, it can be seen that the results obtained by the present method are
always lower than those obtained by the Huang and Dong method. Both the stiffness
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Fig. 2. Frequency spectra for a homogeneous isotropic cylinder with v = 0.3, H/R = 1.5()m =1 ;
(b)y m =3,
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Fig. 3. Frequency spectra for a 4-ply [+ 307 =30], graphitc.cpoxy cylinder with 'R = 0.667
(aym = 1:(bym = 3.
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Fig. 4. Frequency spectra for a 4-ply [+ !5/~ 15], graphitc/epoxy cylinder with H/R = 0.667
(@ym=1;(b)ym=3.
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Fig. 5. Frequency spectra for o 4-ply [+ 15 =[5}, graphite epoxy cylinder with #//R = 0.10
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Fig. 6. Frequency spectra for a 16-ply [+ 15/~ 15), graphite/epoy eylinder with #/R = 0.10 and
m o= .

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 7. Frequency spectra for a 12-ply {1/ +45; ~ 0,], graphite/epoxy cylinder with H;R = 0.10 and
m=|.
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methods use the consistent mass approach. Thus, it can be concluded that the present
method yields results closer to the analytical results.

CONCLUSION

A stiffness method bused on through-thickness cubic interpolation functions for the
displacements that maintain continuity of displacement and traction components at the
interfaces between the sublayers has been used to study guided wave propagation in
laminated composite cylinders. This method yields more accurate results than those
obtained from the stiffness method employing quadratic interpolations which ensures the
continuity of only the displacement components. [t may be noted that for the same number
of sublayers modelled in EVP-I1. the present method provides the smaller number of degrees
of freedom which. consequently. reduces the computational time. The numerical results
presented show that dispersion characteristics significantly depend upon fibre orientation
and number of layers, and to a lesser degree on thickness-to-radius ratio. The effect of the
circumferential wave number on dispersion characteristics is significant only for the thick
cylinders in the low frequencies and low wave numbers regime.
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APPENDIX A

The non-zero elements of 3 x 12 matrices [V,] and [V.] of eqn (4) are as follows:

“‘P
:V,(I.3)=)—rl§3.
NG = — £,
MUEREES fr
N33 =2
£:Ps a
N2 = A . f.P
N(35) =22,
n ey SoPs a
1\|(-'5) =*““A"“.
. 1:P - Ay
AL = £+t 24y = L8
NALD = fi+ A Ni(2.4) A
[0 L
Ly =220 vi2.9) = im L2
NALD A" N B =im A
' . [P, £y,
NAL DY = R ({2, 6) =22
N LY xmarhl N{2.6) 5
flA\‘ f;P7
Ay =22 NG =10
N.(L4) A NG D A
VL5 = im0 N(:s*)—f:’—‘i"
(L5 = im e, n ==
fid; 1.8
N -t 1 - Jt7
N(1,6) A N3 ) =im v
i3 9
N2 = 12l —im s N.(3,8) = 1231
Ary i
il - JiPe
W2 =770 N:(3.5) =
N2} A N3 = fi+im o,
R SO AT fiAy,
) - : - N, o Jen
N2 jd-’_,1 +im A Ni(3.6) A

The parameters £, are given by :

Forl=1,2,3;j=1+1:

Cls; Cn!\ (‘on
For!=4.56;5=1-2:
Cy O, Cu[
Pr= Cy, Cs; s
C«l (‘ny ('os *
Forl=7,...,10;j=1-5:
Cy Cl) Cs
PI:”"(‘” C,/ Cioh

C‘&l CGJ Cbb
A= va

Apq is the cofactor of element G, of matrix A, Functions £, (n = 1.2, 3,4) are cubic polynomials given by

Ji=12=3n+n"), Sr=iQ+3n-n")
.k 2 h 2
j:=~§(|wq-q‘+q'l. f.=»;5(~l—n+rf*+q").

where

779

(A1)

(A2)

(A3)

(A9



N. RATTANAWANGCHAROEN ef al.

n= E‘(zr-’k.l""ﬂ-
%

ho=ro  —r.

The matrices {C ). [C.). [M]. [K\]. [K.] and [£,] through [E.] in eqn (6) are given by :

G\l =

.

il

[M] =

’ pl N TN dr.

) pLV TV dr.

(K] = J; [T [Cd]r dr.

K} = j [«I"ICIYr dr.

| oVl

(E\] = J:' ([d17(CYal = (BT (CHB) + @1 [C i) dr,

-~

(£ = J [@"C1p] = (A [C L] r dr.

[F] = f) [T 1C) ) r dr,

where overbar indicates complex conjugate.

The non-sero clements of 6 x 12 matrix [of in eqn (AS) are as tollows :

IR /Ari,
wl.2) "?n
atl.3) = im /'A.rrk .
atl,4) = f—‘fﬂ‘
a(l,5) =im /3”:
w(l, 6} = /-"j!!
a2y = . ":Arf f\}:r! z,&::
w2y < I i S

Ar Ar
0 e 2)
W2d) = /:r‘ i [“Z\r"“-
@2.5) = - "LAL:“ 2:,‘
a2.6) = /A\r, +im ffr' )

Gty im0
al=, *lm_\r;r‘

WAy
a(4,2) = im /44 ".
Ar
m P,
w(4,3) = — 'Ar"r -
WA,
a(4,4) = im ’er’.
mfPy
a(4,5) = ~ Ay HimT
46 =i 1A,
afd,6) = im /3
JiP
s = =l
a(S, 1) A,
S A
9y = LETLE
a(5.2) A
P
w(5.3) =im jAr,‘J
1A
a(5.4) = 4’3 H
P
a(5.5) = f,,+im Lecfy
Ar,
fiAss
5.6) = LA
a(5, 6) A
P ) WP
PN R AV (/O L
Ar, r Arngr o

a(6.

(A5)
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f..,r fl f: A}! f} - flAH
a(6.3) = fi,+ T a(6.4) = Sir=—}+m A
m:f:PI N A _ m:ff’ Py _f,
_-.-A—’.:;—-f- mA”(fJ« ) a(6.5) = Arer +:mAr( »==)
AI} f: . fZAIZ
a{6.6) = -A—_(f:', ~T)+IMT. (A6)
where the f,, represents ¢ f,/Cr.
The non-zero elements of 6 x 12 matrix {#] in eqn (AS5) are as follows:
b . P P
b(1.3) = ) P‘ é(4.3)ﬁf,+£+: f;( 4+ ").
r A
_f:,P: _ Sl
b(l.S)«—‘T. b(4.4)~wa .
S:Py o P ) . fifPs Ps)
=208 27 4.5 =imZ [ 2+,
52,3 o +im o b(4.5) 1m‘!3 Y + ;
f:Py . [P f:8y
2 o s ——— - TS 7T
b(2.5) = A +im Y 5(4.6) A
F
b(3.1) = f ’. b(5.1) = fi+fo+ f”"
k
/:Au LA,
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The 6 x 12 mutrix [¢] in eqn (AS5) has non-zero clements as follows
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where the rematning six columns of matrices [¥], [N.]. [4]. [6] and [d] can be obtained from the first six columns
by replacing f, by /3. /by fi,and re by 74, 4.



